
FORMAT FOR ELECTRONIC FORMS

In the past, electronic forms processing has been handled on an ad-hoc
basis: each paper form was Web enabled by creating custom software.
However, the process of editing an electronic representation of a paper
form, verifying the data, and viewing the results can be generalized.
By producing a universal set of tools for editing and viewing
electronic forms, and specification files that capture the essence of
each form, the process can be simplified by orders of magnitude. The
forms processing tool set can be created and maintained once for use
with thousands of easy to produce specification files.

For over one hundred years, paper forms were the only method available
for processing the flow of information between Nebraskans and their
state government. Over the last five years, information processing
with the public has been revolutionized. By employing the World Wide
Web as a technology for enabling E-government, we have developed the
skills and tools to effectively create electronic access to government
services. Many functions that could only be accessed through a paper
document filled in with typewriter or pen are now performed with a
computer. The savings in time and dollars to taxpayers and citizens is
beyond dispute.

However, up to this time, government services have generally been
automated one at a time. Each paper form replaced (or augmented) by an
electronic counterpart has required:

* An HTML representation of the form (or forms) involved

* Software to process the submitted forms

* A storage and retrieval mechanism for the resulting information

* Error checking code to make sure HTML fields are filled in properly

This collection of markup and code, built up in place of each automated
form, must be created and maintained by trained, experienced
programmers. The code must be modified to accommodate even a minute
change.

While this approach works well for a small collection of processes, it
is unlikely that this method will scale for the thousands of forms the
State of Nebraska uses. The time required for the creation and
maintenance of a code base for each form certainly makes this practice
unattractive, and may make it untenable.

Furthermore, the automated process is tied to the technology put to use
at the time, making modernization difficult. For example, a programmer
working only a few years ago may have made a wise choice, based on the
mature technology of the time, by employing Perl, Informix, and HTML
2.0 to automate a previously paper-only process. These technologies
are still viable today and are likely to be useful far into the
future. However, today we might wish to make use of Java, Oracle, and
HTML 4.0. Under our current development practices, the only way to do
this would be to scrap the existing system and rewrite it with today's
technology in mind.

Clearly, a more generalized approach is required if we are to quickly
create and efficiently maintain a large base of electronic forms. So,
rather than applying individual technologies and skills to individual
forms, it makes sense to create an architecture for electronic forms
automation.

Under the electronic forms architecture proposed by NOL, the current
practice of creating HTML documents and a code base for each electronic
form will no longer be needed. Instead, each electronic form will rely
on a small collection of specification and data files, and all
electronic forms will be processed by a suite of generalized tools and
applications. However, the specification and data files will also be
easy to use with custom software written in any language, should their
be a need to do so.

The specification and data files required by each electronic form will
include:

* A master "blank form" specification file. This electronic document
 will contain an entry for each blank on the paper version of the
 form, type information for the blanks, the text used to prompt the
 user for the data for each blank, and help information for the user.

* A formatting specification file, used for converting the completed
 form into a data structure requested by the agency for convenient
 incorporation into the agency's information systems.

* A constraints file. Any limits on the data to be entered into the
 electronic version of the file will be placed here. For example, a
 constraint could be specified to limit a social security number blank
 to exactly nine digits.

* One or more data files containing an image of the original paper
 form, and one or more specification documents containing placement
 information. One placement file will be needed for each image file.
 This placement information, combined with a data file for a completed
 form and the corresponding image file, will be all that is needed to
 produce a graphical representation of the completed form. The
 resulting image will bear an exact resemblance to a completed,
 typewritten paper form.

The suite of electronic forms software will include (but need not be
limited to):

* Editing software, allowing users of the form (both among the public
 and within state government) to fill in the form blanks. A Web
 interface will probably be the best choice when designing this
 editing software. The editing software may also consult the
 constraints file to assure that no incorrectly formatted data is
 introduced.

* Constraints checking software. The completed form can be checked
 against the constraints file to make sure no errors were introduced
 during the data entry.

* Image generation software. This software will combine the completed
 form data, the image of the paper form, and the layout document to
 produce an image of a completed form, just as it would look if the
 process were done on paper only.

* Formatting software. The formatting specification will be used as a
 guide to generating output in a form appropriate for the agency's
 use. For example, the data filled in to the form's electronic
 "blanks" could be output as comma separated values for importing into
 a RDBMS. More than one formatting file could be provided if needed.

Nothing about the above software restricts it to one programming
language or platform. Once the necessary specification files are in
place, any version of the above tools can be used to produce and
process the data files. The software could be reimplemented in the
future to take advantage of the latest technological advances -- the
spec files will be just as useful with Java as they are with Perl or
C. Also, implementations of the electronic forms processing tools can
be used concurrently. The public might process the form using an HTML
interface, while the same form could be further edited by state agency
staffers with a custom-built, Java based tool.

As needs change, tools and features can be added to the suite of forms
processing software. Suppose that one agency needs to be able to
process their forms from within Microsoft Excel. Software could be
written to turn a standard data file into an Excel spreadsheet.
Because the form data is in a standard format, the software could be
used with any properly formatted data file. A set of macros developed
for the unique needs of, say, Banking and Finance could be used by the
Department of Revenue or the Nebraska Library Commission. The
standardized format would allow this new software to work with forms
the designers of the Excel macros had never seen or heard of.

Forms, be they paper or electronic, have always been a part of state
government and are with us to stay. When carbon paper was replaced
with photocopy machines, the forms they duplicated stayed essentially
the same. By solving the general problem of electronically enabling
paper forms, we can continue to take advantage of the latest
technology, no matter what the future might bring. Let's create
electronic forms that can take advantage of new technology just as
readily as their paper predecessors.

